A physicist at the University of California, Riverside, and her former graduate student have successfully modeled the formation of SARS-CoV-2, the virus that spreads COVID-19, for the first time.
In a paper published in Viruses, a journal, Roya Zandi, a professor of physics and astronomy at UCR, and Siyu Li, a postdoctoral researcher at Songshan Lake Materials Laboratory in China, offer an overall understanding of the assembly and formation of SARS-CoV-2 from its constituent components.
“Understanding viral assembly has always been a key step leading to therapeutic strategies,” Zandi said. “Numerous experiments and simulations of viruses such as HIV and hepatitis B virus have had a remarkable impact on elucidating their assembly and providing means to combat them. Even the simplest questions regarding the formation of SARS-CoV-2 remain unanswered.”
Zandi explained that a critical step in the life cycle of any virus is the packaging of its genome into new virions or virus particles. This is an especially challenging task for coronaviruses, like SARS-CoV-2, with their very large RNA genomes. Indeed, coronaviruses have the largest genome known for a virus that uses RNA as its genetic material.
SARS-CoV-2 has four structural proteins: Envelope (E), Membrane (M), Nucleocapsid (N), and Spike (S). The structural proteins M, E, and N are essential for the assembly and formation of the viral envelope — the outermost layer of the virus that protects the virus and helps facilitate entry into host cells. This process occurs at the membrane of the Endoplasmic Reticulum Golgi Intermediate Compartment, or ERGIC, a complex membrane system that provides the coronavirus its lipid envelope. The assembly of coronaviruses is unique compared to many other viruses as this process occurs at the ERGIC membrane.
Most computational studies to date use coarse-grained models where only details relevant at large length scales are used to mimic viral components. Over the years, the coarse-grained models have explained several virus assembly processes leading to important discoveries.
Source: Read Full Article